30 research outputs found

    The Decade of the Dendritic NMDA Spike

    Get PDF
    In the field of cortical cellular physiology, much effort has been invested in understanding thick apical drites of pyramidal neurons and the regenerative sodium and calcium spikes that take place in the apical trunk. Here we focus on thin dendrites of pyramidal cells (basal, oblique, and tuft dendrites), and we discuss one relatively novel form of an electrical signal (“NMDA spike”) that is specific for these branches. Basal, oblique, and apical tuft dendrites receive a high density of glutamatergic synaptic contacts. Synchronous activation of 10–50 neighboring glutamatergic synapses triggers a local dendritic regenerative potential, NMDA spike/plateau, which is characterized by significant local amplitude (40–50 mV) and an extraordinary duration (up to several hundred milliseconds). The NMDA plateau potential, when it is initiated in an apical tuft dendrite, is able to maintain a good portion of that tuft in a sustained depolarized state. However, if NMDA-dominated plateau potentials originate in proximal segments of basal dendrites, they regularly bring the neuronal cell body into a sustained depolarized state, which resembles a cortical up state. At each dendritic initiation site (basal, oblique, and tuft) an NMDA spike creates favorable conditions for causal interactions of active synaptic inputs, including the spatial or temporal binding of information, as well as processes of short-term and long-term synaptic modifications (e.g., long-term potentiation or long-term depression). Because of their strong amplitudes and durations, local dendritic NMDA spikes make up the cellular substrate for multisite independent subunit computations that enrich the computational power and repertoire of cortical pyramidal cells. We propose that NMDA spikes are likely to play significant roles in cortical information processing in awake animals (spatiotemporal binding, working memory) and during slow-wave sleep (neuronal up states, consolidation of memories

    Temporal Dynamics of Spontaneous Ca2+ Transients, ERBB4, vGLUT1, GAD1, Connexin, and Pannexin Genes in Early Stages of Human Stem Cell Neurodifferentiation

    Get PDF
    Spontaneous Ca2+ transients drive stem cell proliferation and neurodifferentiation. Deciphering the relationship between neuronal and glial human genes on one side and spontaneous Ca2+ activity on the other side is essential for our understanding of normal brain development, and for insights into the pathogenesis of neurodegenerative and neurodevelopmental disorders. In the present study, forebrain neurons were derived from human embryonic and induced pluripotent stem cells (hESC-H9 and iPSC-15; 22q11.2 deletion) over a period of 21 days in vitro (DIV). Every 1–2 days, multisite optical imaging technique was applied to detect populations of cells with spontaneous Ca2+ transients. The expression levels of 14 genes of interest were analyzed by quantitative polymerase chain reaction (qPCR) on the same biological samples where physiological recordings were performed. The genes analyzed include: the schizophrenia candidate gene ERBB4, connexin (Cx) genes Cx26, Cx36, Cx43, Cx45, Cx47, pannexin-1 (PNX1), neuronal markers PAX6, vGLUT1, GAD1, TUBB3, glial lineage markers BLBP, GFAP, and housekeeping gene ACTB. We found that Ca2+ signals decrease in amplitude, decrease in duration, and increase in frequency during the first 21 days of human neurodifferentiation. The expression levels of ERBB4, PAX6, GAD1, vGLUT1, BLBP, Cx36, Cx45, and PNX1 were found to be strongly positively correlated with the percentage of cells exhibiting spontaneous Ca2+ transients (“Active Cells”). While expression of BLBP, Cx45, ERBB4, GAD1, PAX6, PNX1, and vGLUT1 were correlated with short-duration and long-amplitude Ca2+ transients, Cx43, TUBB3, and Cx47 were better correlated with long-duration and short-amplitude transients. The expression dynamics of Cx26 was unrelated to any aspect of spontaneous Ca2+ activity. Four genes showed an exponential time course with a distinct onset on a given DIV. The onset of PNX1, ERBB4, and vGLUT1 occurred before, while the onset of Cx36 occurred after the first action potentials were detected in early differentiating human neurons

    Single-Neuron Level One-Photon Voltage Imaging With Sparsely Targeted Genetically Encoded Voltage Indicators

    Get PDF
    Voltage imaging of many neurons simultaneously at single-cell resolution is hampered by the difficulty of detecting small voltage signals from overlapping neuronal processes in neural tissue. Recent advances in genetically encoded voltage indicator (GEVI) imaging have shown single-cell resolution optical voltage recordings in intact tissue through imaging naturally sparse cell classes, sparse viral expression, soma restricted expression, advanced optical systems, or a combination of these. Widespread sparse and strong transgenic GEVI expression would enable straightforward optical access to a densely occurring cell type, such as cortical pyramidal cells. Here we demonstrate that a recently described sparse transgenic expression strategy can enable single-cell resolution voltage imaging of cortical pyramidal cells in intact brain tissue without restricting expression to the soma. We also quantify the functional crosstalk in brain tissue and discuss optimal imaging rates to inform future GEVI experimental design

    Modelling human choices: MADeM and decision‑making

    Get PDF
    Research supported by FAPESP 2015/50122-0 and DFG-GRTK 1740/2. RP and AR are also part of the Research, Innovation and Dissemination Center for Neuromathematics FAPESP grant (2013/07699-0). RP is supported by a FAPESP scholarship (2013/25667-8). ACR is partially supported by a CNPq fellowship (grant 306251/2014-0)

    A Strict Correlation between Dendritic and Somatic Plateau Depolarizations in the Rat Prefrontal Cortex Pyramidal Neurons

    Get PDF
    One of the fundamental problems in neurobiology is to understand the cellular mechanism for sustained neuronal activity (neuronal UP states). Prefrontal pyramidal neurons readily switch to a long-lasting depolarized state after suprathreshold stimulation of basal dendrites. Analysis of the dendritic input–output function revealed that basal dendrites operate in a somewhat binary regimen (DOWN or UP) in regard to the amplitude of the glutamate-evoked electrical signal. Although the amplitude of the dendritic potential quickly becomes saturated (dendritic UP state), basal dendrites preserve their ability to code additional increase in glutamatergic input. Namely, after the saturation of the plateau amplitude, an additional increase in excitatory input is interpreted as an increase in plateau duration. Experiments performed in tetrodotoxin indicate that the maintenance of a stable depolarized state does not require inhibitory inputs to “balance” the excitation. In the absence of action potential-dependent (network-driven) GABAergic transmission, pyramidal neurons respond to brief (5 ms) glutamate pulses with stable long-lasting (~500 ms) depolarizations. Voltage-sensitive dye recordings revealed that this somatic plateau depolarization is precisely time-locked with the regenerative dendritic plateau potential. The somatic plateau rises a few milliseconds after the onset of the dendritic transient and collapses with the breakdown of the dendritic plateau depolarization. In our in vitro model, the stable long-lasting somatic depolarization (UP state like) is a direct consequence of the local processing of a strong excitatory glutamatergic input arriving on the basal dendrite. The slow component of the somatic depolarization accurately mirrors the glutamate-evoked dendritic plateau potential (dendritic UP state)

    Imaging Submillisecond Membrane Potential Changes from Individual Regions of Single Axons, Dendrites and Spines

    Get PDF
    A central question in neuronal network analysis is how the interaction between individual neurons produces behavior and behavioral modifications. This task depends critically on how exactly signals are integrated by individual nerve cells functioning as complex operational units. Regional electrical properties of branching neuronal processes which determine the input-output function of any neuron are extraordinarily complex, dynamic, and, in the general case, impossible to predict in the absence of detailed measurements. To obtain such a measurement one would, ideally, like to be able to monitor, at multiple sites, subthreshold events as they travel from the sites of origin (synaptic contacts on distal dendrites) and summate at particular locations to influence action potential initiation. It became possible recently to carry out this type of measurement using high-resolution multisite recording of membrane potential changes with intracellular voltage-sensitive dyes. This chapter reviews the development and foundation of the method of voltage-sensitive dye recording from individual neurons. Presently, this approach allows monitoring membrane potential transients from all parts of the dendritic tree as well as from axon collaterals and individual dendritic spines

    Quantitative Assessment of the Distributions of Membrane Conductances Involved in Action Potential Backpropagation Along Basal Dendrites

    No full text
    Basal dendrites of prefrontal cortical neurons receive strong synaptic drive from recurrent excitatory synaptic inputs. Synaptic integration within basal dendrites is therefore likely to play an important role in cortical information processing. Both synaptic integration and synaptic plasticity depend crucially on dendritic membrane excitability and the backpropagation of action potentials. We carried out multisite voltage-sensitive dye imaging of membrane potential transients from thin basal branches of prefrontal cortical pyramidal neurons before and after application of channel blockers. We found that backpropagating action potentials (bAPs) are predominantly controlled by voltage-gated sodium and A-type potassium channels. In contrast, pharmacologically blocking the delayed rectifier potassium, voltage-gated calcium, or Ih conductance had little effect on dendritic AP propagation. Optically recorded bAP waveforms were quantified and multicompartmental modeling was used to link the observed behavior with the underlying biophysical properties. The best-fit model included a nonuniform sodium channel distribution with decreasing conductance with distance from the soma, together with a nonuniform (increasing) A-type potassium conductance. AP amplitudes decline with distance in this model, but to a lesser extent than previously thought. We used this model to explore the mechanisms underlying two sets of published data involving high-frequency trains of APs and the local generation of sodium spikelets. We also explored the conditions under which IA down-regulation would produce branch strength potentiation in the proposed model. Finally, we discuss the hypothesis that a fraction of basal branches may have different membrane properties compared with sister branches in the same dendritic tree
    corecore